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A mathematical model describing the transient interactions in one-dimensional two-phase 
flows with heat transfer is presented. A moving-boundary refrigerant model is used to 
predict the position of the two- phase/vapor interface.A boundary immobilization technique 
is used to predict the temperature profile along the heat-exchanger wall. Typical results 
of an evaporator model, in terms of interface position and discharge superheat, are 
presented for inlet flow disturbances. The model is then used in an overall heat-pump 
simulation to predict cyclic performance. The results compare favorably to those obtained 
with a high-fidelity spatially dependent heat-pump model, but require significantly less 
computational effort. 
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I n t r o d u c t i o n  

Generally, heat-exchanger models dealing with unsteady 
compressible two-phase flow fall into one of two categories: 
the lumped-parameter approach or the spatially distributed 
approach. MacArthur and Grald (1989) have previously 
developed a set of models in the latter category. In the previous 
work, the conservation equations are solved in an implicit 
fashion to yield unsteady profiles of temperature, enthalpy, 
density, flows, and mass. While the use of an implicit 
formulation allows integration time steps of up to ten seconds, 
the calculations are computationally intensive. Thus the 
spatially distributed model is not well suited for total system 
simulations (e.g., as part of a residential or commercial building 
simulation) in which there are many interacting components. 
It is therefore desired to construct a heat-exchanger model that 
will capture the essence of the spatially distributed model yet 
be significantly less costly. 

Most existing transient heat-pump simulations described in 
the open literature utilize simplified heat-exchanger models in 
which spatial dependence is ignored. This includes the 
time-constant approach of Tree and Weiss (1986) and the 
single-node approach of both Dhar and Soedel (1979) and Chi 
and Didion (1982). James and James (1986) present a critical 
analysis and review of models for refrigeration systems and 
conclude that since 1973 the modeling approaches have been 
primarily based on stirred-tank representations of the heat 
exchangers. 

The fundamental idea behind the moving-boundary 
approach presented here is to realize a decrease in 
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computational complexity relative to the spatially distributed 
approach, while preserving a faithful representation of the 
heat-exchanger dynamic response. To accomplish this, the 
transition point concept first described by Wedekind (1965) has 
been extended. In this article, the spatial dependence of the 
heat exchanger is approximated by converting the governing 
partial differential equations of the compressible fluid into two 
ordinary differential equations. One is for determining the 
position of the two-phase/vapor interface, and the other is for 
determining the saturated vapor density, which can in turn be 
used to evaluate the pressure within the heat exchanger. In 
addition, the article presents a technique for accurately 
calculating the wall heat flux by a coordinate transformation 
that allows the spacing of the wall grid nodes to expand and 
contract as the two-phase/vapor interface moves. 

Migration of refrigerant charge has been found to be one of 
the determining factors of dynamic heat-pump performance 
(Murphy and Goldschmidt 1982; Rasmussen et al. 1987). Any 
model must therefore have a means of representing the mass 
distribution. While this distribution is inherent in spatially 
distributed models, simplified approaches by their nature 
cannot be used to obtain this information. In the model to be 
described here, the distribution is incorporated by using mean 
void-fraction information, which is determined for a particular 
heat pump at various operating conditions from the mass 
profiles generated by the model described in MacArthur and 
Grald (1989). 

The moving-boundary approach of the evaporator model 
was chosen to facilitate the investigation of refrigerant flow 
control strategies for which knowledge of the amount of 
superheat is required. The same moving-boundary approach 
can also be applied to the condenser, except that in the 
condenser there will be an additional interface: the 
two-phase/liquid interface. Since this analysis was primarily 
concerned with the evaporator, and hence with superheat 

266 Int. J. Heat and Fluid Flow, Vol. 13, No. 3, September 1992 



Moving-boundary formulation for modeling two-phase flows: E. W. Grald and d. W. MacArthur 

response, less attention was focused on the condenser. The 
condenser was therefore treated in a more conventional 
lumped-parameter fashion. However, to maintain reasonable 
accuracy of the mass of refrigerant residing in the condenser, 
a functional parameter is introduced to ensure that the mean 
void fraction in the lumped-parameter model corresponds to 
that given by the spatially distributed model. 

In the remainder of this article, attention will be focused on 
the moving-boundary approach used in the evaporator. 
Techniques for modeling the other components in a heat pump 
can be found throughout the literature (Erth 1970; Fischer and 
Rice 1981 ; Domanski 1982). 

Governing equat ions 

The transport processes taking place in the evaporator can be 
described mathematically by the governing conservation laws. 
If no approximations are made, the governing equations are 
the conservation of mass, momentum, and energy for a 
Newtonian fluid. These are a complex set of coupled, nonlinear 
partial differential equations. To maintain computational 
complexity at a reasonable level, a number of approximations 
are made : 

• fluid flow is one-dimensional; 
• viscous dissipation is negligible; 
• spatial variations in pressure are negligible; 
• axial conduction is negligible; 
• work associated with the rate of change of pressure with 

respect to time is negligible; 
• cross-sectional area of the flowstream is constant. 

With these assumptions, the momentum equation is no longer 
necessary. The continuity and energy equations, respectively, 
become 

O p A 8rh 
- - + - - = o  (1) 

Ot Ox 

8pAh Orhh 
- -  + - -  + H, Pr(T, - The) = 0 (2) 

Ot Ox 

A more complete treatment of the derivation of Equations 1 
and 2 is given in MacArthur and Graid (1989). These equations 

can be used to accurately predict the response of a heat 
exchanger with homogeneous flow in thermodynamic equili- 
brium. In most situations, the flow is not homogeneous due to 
the relative slip of the vapor and liquid phases. This 
phenomenon can be conveniently represented by a void-fraction 
model. 

Evaporator model 

All elements on the low-pressure side of the heat pump are 
encompassed in the evaporator model. In general, this includes 
the evaporator coil and the accumulator. The hermetic 
compressor sump, if one exists, can be combined with the 
accumulator. In this model, the accumulator is treated simply 
as a liquid mass storage node (its volume is included with the 
total low-side vapor volume). The rate of liquid flow from the 
accumulator is related to the compressor mass flow by a factor 
that is a fraction of the remaining liquid mass in the 
accumulator. This fraction is determined such that the 
accumulator "dries out" at the same time as the spatially 
distributed model (or experimental data)  during a representa- 
tive cycle. When the liquid falls below a certain level (i.e., below 
the j-tube),  it is metered out at a constant fraction of the 
compressor mass flow rate. 

The model for the evaporator coil itself can be developed 
from the basic conservation equations. To develop this model, 
consider the general situation depicted in Figure 1. As shown, 
the basic elements are the refrigerant, the heat-exchanger wall, 
and the secondary fluid. Each element of the model is described 
below. 

I- I(t) -J 
I -  - I  

Vapor Tfg d/~ m-- 6 

Liquid - u = ~'t ~ Ts 

Thx 

l_I t tTot  t t x . - -  
I-- L = 

Figure I Schematic for model derivation 

Notat ion  

A Cross-sectional or surface area 
cp Specific heat 
h Enthalpy 
H Convective heat transfer coefficient 
k Thermal conductivity 
l Position of the two-phase/vapor interface 
rh Mass flow rate 
N Number of nodes in the heat-exchanger wall 
P Perimeter 
q Wall heat flux 
Q Heat flow in two-phase region 
t Time 
T Temperature 
V Total volume of evaporator, accumulator, and sump 
x Length coordinate 
X Refrigerant quality 

Void fraction 
6 Length of superheat region 
t/ Dimensionless distance 
p Density 

S u b s c r i p t s  

c Compressor 
f Secondary fluid 
fg Latent 
g Saturated vapor 
hx Heat exchanger 
i Inlet 
j Node number 
1 Saturated liquid 
o Outside 
r Refrigerant 
xv Expansion valve 
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Refr igerant 

For the refrigerant, the basic conservation laws are given by 
Equations 1 and 2. It is convenient to first define the volume 
fraction of vapor relative to the total volume of the two-phase 
mixture at any flow cross section as the void fraction, a, and 
the unit wall heat flux as 

q = H,P,(Th, , - T~) 

Equations 1 and 2 can then be written for the two-phase region 
a s  

c~(p~(1 - ~) + p~a)A Oth 
+ - - = 0  (3) 

& 0x 

0(plhl(1 -- a) + pgh,a)A Orb(hi + Xhrg) 
+ q = 0 (4) 

Ot Ox 

It is now desired to obtain an expression for the position of 
the two-phase/vapor interface. To do so, first note that 

hi + Xhf  w = hg - (1 - X)hfg 

Using this relationship, Equations 3 and 4 can be combined, 
expanded, and manipulated to give 

_ Oh, 
0(pl(1 - cQhfgA) (pt(1 - c~) + pgot)A O t  

0t 

0(rh(1 - X ) h f g  
+ + q = 0  (5) 

0x 

In the first term of Equation 5, the variation of the latent heat 
of vaporization with respect to time is given by 

Ohfg Ohfg 0p 
- -  j 

0t 0p & 

Assuming that the pressure dependence of the latent heat of 
vaporization is relatively small, this term can be neglected. Next, 
Equation 5 is integrated from the entrance of the evaporator 
to the two-phase interface, l( t) .  This gives 

0t (pl(1 -- ~)hf,A) dx + ~xx 0h(1 - X)hfg)dx  

f l t) = -- q dx (6) 

The details of the integration of Equation (6) are given in the 
Appendix. If the variation of the refrigerant properties is 
assumed constant over the time step, then the expression for 
the two-phase/vapor interface becomes 

dl 
plhfgA(1 - ~) dt = - Q  + thi(1 - -  X i ) h f g  (7) 

where Q is the total heat transfer in the two-phase region and 
is an explicit function of l ( t) .  The continuity equation for the 
vapor and liquid phases, respectively, can be written by 
inspection from Equation 3. These expressions can then be 
integrated in a fashion similar to that of Equation 6. The 
continuity equation for the liquid phase becomes 

dl (1 - X~)rh~ - rhv (8) A(I  -- ~ ) p t ~  = 

where the second term on the right-hand side of Equation 8 is 
the rate at which liquid refrigerant is converted to vapor along 
the length of the evaporator. The integrated form of the vapor 
continuity equation is 

~tA dp~l = (Xrh)~ + rhv -- rhe (9) 
dt 

where the last term on the right-hand side of Equation 9 is the 
mass flow rate leaving the evaporator and entering the 
accumulator. This mass flow rate is determined in the 
accumulator model such that the boundary conditions required 
by the compressor are satisfied. By combining Equations 7 and 
8, an expression for the vapor generation rate is given by 

Q 
t h v - -  

hfg 

Equation 9 can be modified by substituting the above 
expression, and by assuming that the vapor volume of the 
evaporator, accumulator, and sump, if one exists, is much larger 
than the liquid volume. This results in the following expression 
for the vapor density : 

V dpg = (Xth)i + Q d~- hf, th~ (10) 

where V is the total volume of the low-pressure side of the heat 
pump. Equation 7 can be used to predict the response of the 
two-phase/vapor interface, while Equation 10 can be used to 
determine the response of the vapor density. By assuming that 
this density is the saturated density and by using the equation 
of state for the refrigerant, the evaporator pressure can be 
determined in a straightforward fashion. Heat transfer in the 
two-phase region is given by Equation A7 (see Appendix). The 
heat transfer in the superheat region can be determined by 
performing an energy balance on the superheat section of the 
heat exchanger, the area of which is tentatively known. 
Integration of the heat flux requires information on the wall 
temperatures. A description of this model is given in the next 
section. 

To complete the refrigerant model, information is required 
for the mean void fraction and on the liquid carryover (the 
amount of liquid initially drawn out of the evaporator by the 
compressor that is deposited in the accumulator) during the 
start-up transient. Correlations for these two quantities are 
obtained from results generated by the spatially distributed 
model described in MacArthur and Grald (1989). The 
void-fraction profile can then be integrated via Equation A3 in 
the Appendix to determine the mean void fraction at various 
operating conditions. For the particular evaporator results 
presented here, the mean void fraction was correlated well by 
a linear function of compressor speed. Typical values varied 
between 0.92 and 0.94. Liquid carryover is represented in the 
moving-boundary model by transferring a fraction of the liquid 
residing in the evaporator to the accumulator at the beginning 
of each start-up. As noted above, the amount of carryover is 
correlated to the results generated by the spatially distributed 
model. 

Heat-exchanger  wa l l  

Including axial conduction, the heat transfer in the 
heat-exchanger wall is governed by the following form of the 
one-dimensional ( 1-D ) energy equation : 

0Thx ~2Thx 
cppA)h,-- ~ -  = kA,, ~-x2 + HoPo(T f - T,,) 

- H , P , ( T h , -  Tr) (11) 

Due to the movement of the two-phase/vapor interface, it is 
convenient to cast the energy equation in a suitable 
moving-boundary form. It is logical to treat the two-phase and 
superheat regions in a distinct fashion. To do this, it is necessary 
to properly account for the motion of the refrigerant interface 
adjacent to the wall. The approach taken here is a coordinate 
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transformation that in effect "freezes" the interface. In this 
frozen coordinate system, grids can be easily constructed for 
the temperature in both the two-phase and superheat regions. 
The accuracy of the solution for this approach is insensitive to 
the position of the interface. That is, the same number of grid 
elements is applied regardless of the interface position. For this 
transformation, the spatial direction is normalized relative to 
the interface, and the temperature becomes a function of the 
new coordinate as well as time. The transformation is given in 
terms of the following relationships : 

x 
t / = -  

T -= T(t/, t) 

With these definitions, the derivatives in Equation 11 can be 
expanded. The temperature gradient becomes 

a~x ' aT  a~xxt aT  a~x ' l O T  

The second derivative of temperature with respect to distance 
becomes 

a2T _ a at/ 1 a T _  1 a2T 

~X2 t at/ ax 6 ~t/ (~2 at/2 

and the unsteady term becomes 

- ~,~ at & x 

aT  _ a r  d ( x ~ - ' )  d~ + _ _  

t3t/ dr5 dt x at 

x d¢3 aT aT 
- + 

(~2 dt at/ t~t 

Substituting these expressions into Equation 11 gives the 
following expression for the energy equation in transformed 
coordinates : 

aT,~ t/d~ aT,. (kA)h~ a2Th. 
(CvPA)h. ~ - -  = (cpA)h. - -  + ~2 

6 dt at/ dr/2 

+ HoPo(Tf -- Thx) -- H~P,(Th, -- T~) (12) 

The portions of the heat-exchanger wall adjacent to the 
two-phase and superheated refrigerant regions, respectively, are 
divided into a series of control volumes or nodes. Note that 
the orientation of x chosen here is positive in the direction 
opposite to the refrigerant flow. The discrete form of the energy 
equation can be obtained by integrating Equation 12 over a 
control volume from one control-volume face ("minus," labeled 
m) to the other ("plus," labeled p). This results in the following 
expression for the heat-exchanger wall : 

~P . _ . aTh. . ~ ' tl d f  aThx d t  / 
[ C p p A ) h ' - ~  -at /  = (cppA)3  dt  a--~- 

I ' (kA)h.  a aT,. + 
d m  

-I- Hoeo(T f -- Thx)dt/ 

+ N P , ( r h , -  r,),tt/ (13) 

Assuming a linear temperature profile between nodes allows 

the following for use in evaluating Equation 13. 

(Thx,i+l -- Thx,i ) 
T"x'P = 2 

(T.x,, + T.., ,_,) 
Zhx,m 

2 

aT..  __ (Th., i . t  - Th.,,) 

6~t/ p At/p 

aT..  ( Thx,, - Th..,_ , ) 

an m Anr, 

Thus the final form of Equation 13 becomes 

~At/i(cppA )h, d~, . i  

d& 
= (cppA)h x ~-  (Th.. , . ,  - Th.. i - , )  

+ a L At/. a t / .  j 

+ aAt/,(noeo(Tf -- T..3) - HrP.(Th. 3 - T,.i) ) (14) 
where i = 1 to N nodes. A similar set of equations exists for 
both the two-phase and superheat sections of the heat 
exchanger. 

S e c o n d a r y  f l u i d  

The energy conservation equation for the incompressible 
secondary fluid is 

cOTf OTf 
( c p p A ) f ~  + (~hCp)f-~- x + HoPo(T f - Th, ) = 0 (15) 

where the mass flow-rate term is negative for counterflow 
applications and is uniform along the length of the heat 
exchanger. For parallel flow applications, the mass flow term 
is positive. To model crossflow situations, the equations must 
be modified to properly account for the number of passes. 

S o l u t i o n  p r o c e d u r e  

The evaporator equations are solved in an iterative fashion at 
each time step. First a guess for the evaporator pressure is 
made. The saturated refrigerant properties and inlet quality are 
then computed. The position of the two-phase/vapor interface 
is calculated via the implicit form of Equation 8. The total heat 
transfer in the two-phase region is then determined. A secant 
method is used to guess a new pressure. This procedure is 
repeated until the implicit form of Equation 10 is satisfied. The 
temperature profile in the superheated vapor can then be 
determined. Next the derivatives of the heat-exchanger wall 
and secondary-fluid temperatures are computed. The mass flow 
rates into and out of the accumulator, the enthalpy of the 
refrigerant leaving the accumulator, and the amount of liquid 
remaining in the accumulator are calculated last. Finally, the 
heat-exchanger wall and secondary-fluid derivatives are 
integrated and the time step is incremented. 

R e s u l t s  

To illustrate the fundamental characteristics of the model, 
results will be presented for inlet flow disturbances. 
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Figure 2 Transition-point response for step increase and decrease 
in inlet flow 

Characteristic open-loop responses of both the two-phase/ 
vapor interface and the exit superheat will be described. Next, 
the closed-loop performance of the model in an overall 
heat-pump simulation will be given. Heat-pump results with 
the moving-boundary model will be compared with results 
obtained using a detailed spatially dependent model. 

O p e n - l o o p  p e r f o r m a n c e  

A description of the physical interactions will be given to foster 
a better understanding of the results to be presented shortly. 
First, consider the case of constant evaporator pressure and 
uniform external heat flux along the heat-exchanger wall in 
which there is no thermal capacitance. Neglecting thermal 
capacitance implies that there will also be a uniform heat flux 
along the inner wall. A step decrease in refrigerant mass flow 
rate in this instance would reduce the length of the two-phase 
region. The difference between the initial and final position of 
the two-phase/vapor interface represents an excess of liquid 
that must be vaporized. Physically, the time constant for the 
interface to move from its initial to final position represents 
the time that would be required to vaporize all the excess liquid, 
provided that the heat transfer rate to the excess liquid was 
equal to the rate that existed at the beginning of the transient. 
Thus, theoretically, it takes an infinite amount of time to move 
from the initial to the final position. The reason is that the heat 
transfer rate to the excess liquid asymptotically approaches zero 
as the heat transfer area approaches zero. 

A similar scenario exists for a step increase in flow when the 
thermal capacitance of the tube wall is neglected. In this 
instance, rather than having an initial excess of liquid, there 
will be an initial shortage of liquid. The response, however, will 
be the same, since the internal heat flux is uniform. 

When the thermal capacitance of the tube wall is taken into 
account, the internal heat flux can be nonuniform and time 
dependent even when the external heat flux is maintained 
constant. This situation will exist when the two-phase/vapor 
interface moves in a direction where the temperature is higher 
than it would be under steady conditions. Thus the transient 
response will, in general, be different depending on whether the 
flow is increased or decreased. 

To show the effect of inlet flow disturbances, the evaporator 
will be simulated in an open-loop fashion. For  this test, 
evaporator pressure will be held constant at 690 kPa such that 
the evaporation temperature has no impact on the results. In 
addition, the inlet enthalpy is maintained at 103 kJ /kg  and the 
dry-bulb/wet-bulb air temperature entering the coil is 

maintained at 27/20°C. Flow disturbances are introduced by 
either making a step increase in flow from 0.068 kg/s to 
0.073 kg/s or by making a step decrease in flow from 0.073 kg/s 
to 0.068 kg/s. 

Figure 2 shows the results of the model for a step increase 
and a step decrease in flow. The response of the 
two-phase/vapor interface clearly differs depending on whether 
the flow is increased or decreased. The right axis corresponds 
to an increasing flow (the two-phase length increases) while 
the left axis corresponds to a decreasing flow (the two-phase 
length decreases). As described above, the significant 
interaction with the tube wall occurs primarily when the 
interface encounters tube temperatures significantly higher than 
those that will exist under steady conditions. The effect of this 
interaction is to slow down the response and to distort the 
shape of the response curve. The receding interface exhibits 
classical exponential response and approximates the case for 
uniform heat flux. The discrepancy between the two curves 
increases as the tube capacitance increases. 

Movement of the interface directly affects the amount of 
superheat that leaves the evaporator. Response of the two-phase 
interface and corresponding discharge superheat is illustrated 
in Figures 3 and 4 for a decrease and increase in flow, 
respectively. These results correspond directly to those of the 
previous figure, except that here the time base has been 
expanded to capture the complete response. Again, the 
characteristic response is substantially different depending on 
whether the flow is increased or decreased. As the flow is 
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Figure 3 Two-phase length and superheat response for step 
decrease in inlet flow 
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Figure 4 Two-phase length and superheat response for step 
increase in inlet flow 
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increased, the apparent order of the response increases relative 
to the case of decreasing flow. Unlike the interface response, 
the superheat response does not exhibit a maximum slope at 
the onset of the transient. 

Closed-loop performance 

In this section, attention is focused on the operation of the 
closed-loop system. The moving-boundary model is used only 
for the evaporator and is combined into an overall heat-pump 
simulation that includes gas engine, variable-speed compressor, 
condenser, and expansion-valve models. The simulation is run 
in both the cooling and heating modes. In the cooling mode, 
air enters the evaporator and condenser at 27°C and 30°C, 
respectively, and the compressor is run at low speed 
(1000 rpm). In the heating mode, air enters the evaporator and 
condenser at 8°C and 20°C, respectively, and again the 
compressor is run at low speed. 

As described previously, the objective of the moving- 
boundary model is to reduce computational effort relative to 
that required by a spatially dependent model while preserving 
a faithful representation. The basis of comparison for the 
present study is the model described in MacArthur and Grald 
(1989). This model has been tested for various systems--air- 
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Figure ,5 Pressure response for spatially distributed model and 
comparison with experimental data (from MacArthur and Grald 
(1989) ,  with permission) 
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Figure 6 Comparison between moving-boundary and spatially 
dependent model (cooling mode) 
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Figure 7 Comparison between moving-boundary and spatially 
dependent model (heating mode) 

to-air, water-to-water, open, and hermetic--under a variety of 
conditions, and has been compared to experimental data. An 
example of the performance of the spatially dependent model 
is given in Figure 5 (taken from MacArthur and Grald (1989), 
with permission), which shows a comparison between predicted 
and measured pressure responses. 

Although the performance of the spatial model has proved 
to be accurate, its usefulness has been limited by computational 
complexity. The moving-boundary approach presented here 
has resulted in an order-of-magnitude reduction in computa- 
tional effort. Figure 6 illustrates that this reduction in effort 
has not come at the expense of accuracy in predicting 
evaporating response. This test was conducted in the cooling 
mode under the conditions described above. Experience has 
shown that the response of the heat pump is very sensitive to 
the interactions within the evaporator and accumulator. 
Therefore, only the evaporator was modeled using the 
moving-boundary approach. A lumped-node formulation was 
used to represent the condenser. 

Even though the condenser model is very simple, Figure 7 
shows that it is reasonably accurate at predicting heat rejected 
during the heating mode. This accuracy is a synergistic effect 
of using the moving-boundary model in the evaporator where 
it is most needed. The largest discrepancies occur during the 
off period, which is precisely when the evaporator has the least 
impact on condenser response. During the off period, the 
simplified model allows the condenser pressure to fall too far, 
and hence there is too much heat absorbed (negative heat 
rejected). 

Conclus ions  

A moving-boundary model has been presented for predicting 
heat-exchanger response for two-phase flow applications. While 
the model was developed for evaporators used in heat pumps, 
the technique can be applied to heat exchangers in general with 
simple 1-D two-phase flows where pressure gradients and head 
terms are unimportant. The approach can result in significant 
computational savings relative to a spatially distributed model 
without substantial loss in accuracy. The approach does require 
a priori information on mean void fraction and is more complex 
than simple, single-node models. Since this technique captures 
the effect of direction of the two-phase interface on discharge 
temperature, it can be used to advantage in designing better 
discharge temperature controllers. 
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A p p e n d i x  

Integration of Equat ion 6 requires correct treatment of the 
time-dependent integration limit. To treat this situation, 
Leibniz's rule is used. Hence, for the first term, 

fl (pl(I  - ot)hfgA )dx = c3t Jo pt(1 - ce)hfsAdx 

- pl(1 - ct)hfgAlx=.,dl! t) (A1) 
tit 

Since the densi ty-enthalpy product is constant along the length 
of the heat exchanger, this term may be removed from the 
integral. At x = l(t), the void fraction is uni ty;  hence, one 
minus the void fraction is zero, and the last term in Equation 
A1 is zero. The above expression can therefore be written as 

fo l") (~ 
(PIt 1 -- o~)hfgA )dx 

-~Fp'hrsAl't")'fi("(1-a)dxlatL l(t) (A2) 

By definition, the mean value of the void fraction is 

1 I"' 
= f(O Jo adx (A3) 

Therefore, Equat ion A2 becomes 

(p~(1 - ct)hfgA )dx = ~ p~hr~A (1 - ~t)l( t ) (A4) 
dt 

Direct integration of the next term in Equation 6 gives 

fft) ~ rh (1 -  X)hr.dx 
~TX 

= Ih(1 -- X)hfglx=~( o - ~h(1 - X)hfglx=o (A5) 

Since the quality, X, at x = l(t) is by definition unity, Equation 
A5 becomes 

f i  fo c ~ 
~xx rh(1 - X)hfgdx = - th i (1  - Xi)hfg (A6) 

where the subscript i refers to evaporator inlet conditions. The 
final term in Equation 6 is the total heat flow in the two-phase 
region. This term can be evaluated by 

i t) Q = qdx (A7) 

Equations A4, A6, and A7 can be substituted into Equation 6 
to give the response of the moving refrigerant boundary.  Since 
the integrations remove the spatial dependence from the 
refrigerant problem, the partial differential equation is reduced 
to an ordinary differential equation. 
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